R在线运行

版本:

所属目录
点击了解高性能代码运行API
运行结果
教程手册
代码仓库
极速运行
终端运行
图形+终端

                        
以下是用户最新保存的代码
保险统计分析期末作业 发布于:2025-01-21 10:15 022900210121-李文浩 发布于:2024-12-19 11:08 一月又一月 发布于:2024-12-18 21:17 r语言学习记录 发布于:2024-12-06 17:30 森林图——r 发布于:2024-11-18 15:16 累计和法和最大规模法 发布于:2024-11-15 18:06 测试数据处理 发布于:2024-10-27 13:22 problem set1 发布于:2024-10-16 18:27 第四章代码 发布于:2024-10-13 15:35 第三章代码 发布于:2024-10-13 15:18 生成COA 发布于:2024-09-19 10:02 试运行代码 发布于:2024-08-16 11:02 计算重男轻女是否导致性别失衡 发布于:2024-07-27 11:05 测试一代码 发布于:2024-07-27 23:10 医学数据分析实战 发布于:2024-07-25 16:07 测试1:负二项分布 发布于:2024-07-16 11:00 R测试程序 发布于:2024-06-28 11:16 为黄记煌进行数据分析 发布于:2024-06-25 13:42 first R code 发布于:2024-05-19 09:51 尝试说明图片 发布于:2024-04-10 13:37 --- 比较公式和循环计算平均值的流逝时间 发布于:2024-03-10 19:24 农业R语言统计 发布于:2023-12-14 14:02 朱兴垚-202105002605 发布于:2023-12-03 23:45 R demo 发布于:2023-10-06 16:14 小姑父的箱线图 发布于:2023-07-28 17:33 第一章第二章 发布于:2023-06-12 11:01 R入门预备知识 发布于:2023-06-09 15:04 创建一个数轴 发布于:2023-06-07 15:48 生成随机数 发布于:2023-05-10 17:10 读取gct文件 发布于:2023-05-06 11:08 excel画图 发布于:2023-02-09 18:17 储存经纬度的数组 发布于:2023-01-28 16:20 计算,logp函数,修改 发布于:2022-11-15 16:41 用 Monte Carlo 方法进行 概率和分位计算 发布于:2022-11-01 09:49 haoyong hho 发布于:2022-10-25 20:36 数理统计大作业代码 发布于:2022-10-24 16:44 画图——df=12的t分布 发布于:2022-10-23 19:18 统计作图题 发布于:2022-10-24 18:39 统计分析题 发布于:2022-10-23 16:39 ISYE 6501 HW8 (11.1) 发布于:2022-10-17 10:48 城市广告市场案例 发布于:2022-10-07 15:32 画sin()函数图像 发布于:2022-08-24 17:10 我的测试代码 发布于:2022-08-10 10:23 离散卷积逆 发布于:2022-06-20 17:03 定积分直接求和 发布于:2022-06-20 03:29 Buffon's needle problem 发布于:2022-06-03 12:48 试运行输出 发布于:2022-05-06 08:54 计算向量中的两两差值 发布于:2022-05-02 16:52 30日晚上10:00 发布于:2022-05-01 10:38 毕业论文代码 发布于:2022-03-06 23:18 [更多]
显示目录

R语言 数据帧



学习嵌入式的绝佳套件,esp8266开源小电视成品,比自己去买开发板+屏幕还要便宜,省去了焊接不当搞坏的风险。 蜂鸣版+触控升级仅36元,更强的硬件、价格全网最低。

点击购买 固件广场

R语言 数据帧

数据帧是表或二维阵列状结构,其中每一列包含一个变量的值,并且每一行包含来自每一列的一组值。
以下是数据帧的特性。

  • 列名称应为非空。
  • 行名称应该是唯一的。
  • 存储在数据帧中的数据可以是数字,因子或字符类型。
  • 每个列应包含相同数量的数据项。

创建数据帧

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5), 
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25), 

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
      "2015-03-27")),
   stringsAsFactors = FALSE
)
# Print the data frame.            
print(emp.data)

当我们执行上面的代码,它产生以下结果 -

 emp_id    emp_name     salary     start_date
1     1     Rick        623.30     2012-01-01
2     2     Dan         515.20     2013-09-23
3     3     Michelle    611.00     2014-11-15
4     4     Ryan        729.00     2014-05-11
5     5     Gary        843.25     2015-03-27

获取数据帧的结构

通过使用str()函数可以看到数据帧的结构。

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5), 
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25), 

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
      "2015-03-27")),
   stringsAsFactors = FALSE
)
# Get the structure of the data frame.
str(emp.data)

当我们执行上面的代码,它产生以下结果 -

'data.frame':   5 obs. of  4 variables:
 $ emp_id    : int  1 2 3 4 5
 $ emp_name  : chr  "Rick" "Dan" "Michelle" "Ryan" ...
 $ salary    : num  623 515 611 729 843
 $ start_date: Date, format: "2012-01-01" "2013-09-23" "2014-11-15" "2014-05-11" ...

数据框中的数据摘要

可以通过应用summary()函数获取数据的统计摘要和性质。

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5), 
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25), 

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
      "2015-03-27")),
   stringsAsFactors = FALSE
)
# Print the summary.
print(summary(emp.data))

当我们执行上面的代码,它产生以下结果 -

 emp_id    emp_name             salary        start_date        
 Min.   :1   Length:5           Min.   :515.2   Min.   :2012-01-01  
 1st Qu.:2   Class :character   1st Qu.:611.0   1st Qu.:2013-09-23  
 Median :3   Mode  :character   Median :623.3   Median :2014-05-11  
 Mean   :3                      Mean   :664.4   Mean   :2014-01-14  
 3rd Qu.:4                      3rd Qu.:729.0   3rd Qu.:2014-11-15  
 Max.   :5                      Max.   :843.2   Max.   :2015-03-27

从数据帧提取数据

使用列名称从数据框中提取特定列。

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5),
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25),

   start_date = as.Date(c("2012-01-01","2013-09-23","2014-11-15","2014-05-11",
      "2015-03-27")),
   stringsAsFactors = FALSE
)
# Extract Specific columns.
result <- data.frame(emp.data$emp_name,emp.data$salary)
print(result)

当我们执行上面的代码,它产生以下结果 -

 emp.data.emp_name emp.data.salary
1              Rick          623.30
2               Dan          515.20
3          Michelle          611.00
4              Ryan          729.00
5              Gary          843.25

先提取前两行,然后提取所有列

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5),
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25),

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
      "2015-03-27")),
   stringsAsFactors = FALSE
)
# Extract first two rows.
result <- emp.data[1:2,]
print(result)

当我们执行上面的代码,它产生以下结果 -

 emp_id    emp_name   salary    start_date
1      1     Rick      623.3     2012-01-01
2      2     Dan       515.2     2013-09-23

用第2和第4列提取第3和第5行

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5), 
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25), 

    start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
      "2015-03-27")),
   stringsAsFactors = FALSE
)

# Extract 3rd and 5th row with 2nd and 4th column.
result <- emp.data[c(3,5),c(2,4)]
print(result)

当我们执行上面的代码,它产生以下结果 -

 emp_name start_date
3 Michelle 2014-11-15
5     Gary 2015-03-27

扩展数据帧

可以通过添加列和行来扩展数据帧。

添加列

只需使用新的列名称添加列向量。

# Create the data frame.
emp.data <- data.frame(
   emp_id = c (1:5), 
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25), 

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
      "2015-03-27")),
   stringsAsFactors = FALSE
)

# Add the "dept" coulmn.
emp.data$dept <- c("IT","Operations","IT","HR","Finance")
v <- emp.data
print(v)

当我们执行上面的代码,它产生以下结果 -

 emp_id   emp_name    salary    start_date       dept
1     1    Rick        623.30    2012-01-01       IT
2     2    Dan         515.20    2013-09-23       Operations
3     3    Michelle    611.00    2014-11-15       IT
4     4    Ryan        729.00    2014-05-11       HR
5     5    Gary        843.25    2015-03-27       Finance

添加行

要将更多行永久添加到现有数据帧,我们需要引入与现有数据帧相同结构的新行,并使用rbind()函数。
在下面的示例中,我们创建一个包含新行的数据帧,并将其与现有数据帧合并以创建最终数据帧。

# Create the first data frame.
emp.data <- data.frame(
   emp_id = c (1:5), 
   emp_name = c("Rick","Dan","Michelle","Ryan","Gary"),
   salary = c(623.3,515.2,611.0,729.0,843.25), 

   start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
      "2015-03-27")),
   dept = c("IT","Operations","IT","HR","Finance"),
   stringsAsFactors = FALSE
)

# Create the second data frame
emp.newdata <-     data.frame(
   emp_id = c (6:8), 
   emp_name = c("Rasmi","Pranab","Tusar"),
   salary = c(578.0,722.5,632.8), 
   start_date = as.Date(c("2013-05-21","2013-07-30","2014-06-17")),
   dept = c("IT","Operations","Fianance"),
   stringsAsFactors = FALSE
)

# Bind the two data frames.
emp.finaldata <- rbind(emp.data,emp.newdata)
print(emp.finaldata)

当我们执行上面的代码,它产生以下结果 -

 emp_id     emp_name    salary     start_date       dept
1      1     Rick        623.30     2012-01-01       IT
2      2     Dan         515.20     2013-09-23       Operations
3      3     Michelle    611.00     2014-11-15       IT
4      4     Ryan        729.00     2014-05-11       HR
5      5     Gary        843.25     2015-03-27       Finance
6      6     Rasmi       578.00     2013-05-21       IT
7      7     Pranab      722.50     2013-07-30       Operations
8      8     Tusar       632.80     2014-06-17       Fianance

由JSRUN为你提供的R在线运行、在线编译工具
        JSRUN提供的R 在线运行,R 在线运行工具,基于linux操作系统环境提供线上编译和线上运行,具有运行快速,运行结果与常用开发、生产环境保持一致的特点。
yout